#embeddings #gpu #models#embeddings #future #models#ai-coding #code-agents #embeddings #future #github#ai-coding #code-agents #dev #embeddings #future#ai-coding #embeddings #future #markdown#embeddings #image-generation#embeddings #gpu #markdown
Tensorflow Projector or Mantis (Demo).#embeddingsS, like #graph2vec from Graph KernelS (i.e. spread each document towards neighbors), then calculate similaritiesS and the embedding similarity matrix#ai-coding #embeddings#embeddings#embeddings#ai-coding #embeddings #future #optimization #prompt-engineering#embeddings #future #image-generation
Interleaved storytelling,
Memes,
Surrealism.gemini-embedding-exp-03-07 leads the MTEB and is currently the top embedding model by a big margin. #embeddings#embeddings#embeddings#embeddingsSentenceTransformer.encode(docs) it's best if we embed with smaller docs and call it multiple times (rather than embedding more at once). On Colab T4, for gte-base-en-v1.5, when embedding 1,000 docs of up to 8K chars each, here is the TOTAL time it took, based on batch sizes (lower is better) #embeddings#embeddings #gpu#embeddings#cloud #embeddings#embeddings #image-generation
#embeddings #markdown#embeddings
It also supports text-to-image models like flux.dev and
speech recognition models like Whisper.#embeddings#embeddings
#embeddings #future #gpu #markdown #models #optimization #todo#chatgpt #embeddings #gpu #image-generation#embeddings #speech-to-text #voice-cloning
unoti/voice-embeddings,
retkowsky/audio_embeddings,
pyannote/embedding (for speaker similarity),
and more.#embeddings#embeddings#embeddings #gpu#embeddingstext-embedding-3-large which can be truncated. The embedding values have descending importance, so picking the first n is a good approximation. Also, gpt-3.5-turbo-0125 is 50% cheaper. #embeddings #gputext-embedding-3-large with voyage-3-lite. There's a 200 MTok free tier currently. #embeddings#embeddings #future#embeddings #future #speech-to-text #tts #voice-cloning#embeddings#embeddings #search